Novel Upper Rim Functionalizations of Calix[4]arenes using the Tscherniac-Einhorn Amidomethylation Reaction

Kjeld J. C. van Bommel¹), Folke Westerhof, Willem Verboom, and David N. Reinhoudt*

Enschede/The Netherlands, Laboratory of Supramolecular Chemistry and Technology, MESA⁺ Research Institute, University of Twente

Ron Hulst

Enschede/The Netherlands, Department of Chemical Analysis, University of Twente

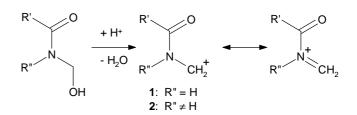
Received January 15th, 1999

Dedicated to Prof. Dr. F. Vögtle on the Occasion of his 60th Birthday

Keywords: Calixarenes, C-C coupling, Electrophilic aromatic substitutions, Synthetic methods, Amidomethylation

Abstract. A variety of novel upper rim functionalized calix-[4]arenes have been synthesized, using the Tscherniac-Einhorn amidomethylation reaction. Partially or fully alkylated calix [4]arenes bearing propyl or ethoxyethyl substituents could be easily condensed with various *N*-methylol-amides and -imides under mild conditions. The resulting methyl-

Calix[4]arenes are a well established building block in supramolecular chemistry [1], because they can be easily functionalized both at the phenolic OH groups (lower rim) or after (partial) removal of *tert*-butyl group at the *para* positions of the phenol rings (upper rim). The functionalization of the upper rim has been extensively studied, resulting in a wide range of methods for the introduction of a diversity of functional groups like allyl [2, 3], keto [4, 5], cyano [4], formyl [3, 6], nitro [7], *iso*(thio)cyanate [8], amino [9], carboxylic ester [9] or perfluorinated alcohol groups [10]. However, other functional groups like the aminomethyl moiety [11] or the more complex acetamido and chloroacetamido moieties can only be introduced *via* multi-step pathways, in often low yields.

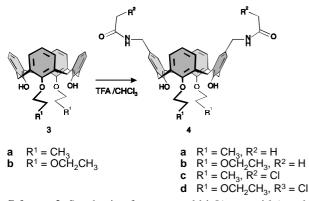

The Tscherniac-Einhorn amidomethylation reaction [12], the condensation of *N*-methylol-amides and -imides with aromatic compounds under acidic conditions, has been used in different areas of organic chemistry [13-15] as a valuable alternative to the Mannich reaction. In general, the intermediate *N*-acylmethyleneimmonium ions are more electrophilic in the amidomethylation process than the aminomethylating agents used in the Mannich reaction. As a consequence also aromatics less reactive than phenol undergo amidomethylation [15a,c]. Whereas the Mannich reaction appears to occur with greater facility with the fully hydroxylated calixarenes [16], in this paper we demonstrate that the Tscherniac-Einhorn amidomethylation can easily be

acetamido- (**4a**, **4b**, **7a**), methylchloroacetamido (**4c**, **4d**, **7b**, **7c**, **9** methylphthalimido (**4e**, **4f**, **4h**) and methylchloroacetamido methylphthalimido functionalized calix[4]arenes (**5**) were obtained in yields varying from 30 till 97%. The amidomethylation reactions were proven to be independent of the conformation of the calix[4]arene.

performed on partially and even fully alkylated calix-[4]arenes. Furthermore, functionalities which are inaccessible using the Mannich reaction, can be introduced. The Tscherniac-Einhorn amidomethylation reaction allows the easy functionalization of calix[4]arenes with methylacetamido, methylchloroacetamido and methylphthalimido moieties or combinations thereof.

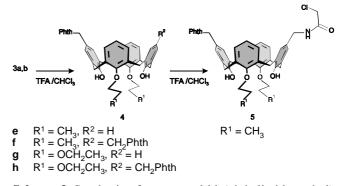
Results and Discussion

The methyleneimmonium ions 1 and 2, formed from the corresponding amidoalkylation reagents in strong acids, are so reactive that they can react with a large variety of aromatics [15a,c]. The strong acid of choice for the reactions on the calix[4]arenes turned out to be TFA, and all reactions were carried out in 1:1 mixtures of TFA and chloroform [17].


Scheme 1 Formation and stabilization of the *N*-acylmethyleneimmonium ion **1** and methyleneimmonium ion **2**.

¹) Further address: NRG, P. O. Box 25, 1755 ZG Petten, The Netherlands. E-mail: K.vanBommel@ct.utwente.nl
 284 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 1436-9966/99/3410X-284 \$17.50 + .50/0 J. Prakt. Chem. 1999, 341, No. 3

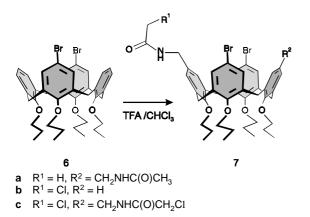
FULL PAPER


Tscherniac-Einhorn amidomethylation by reaction of one equivalent of the 1,3-dipropoxy- **3a** or bis(1-ethoxyethoxy)calix[4]arene **3b** with six equivalents of the commercially available *N*-(hydroxymethyl)acetamide at room temperature gave **4a** and **4b**, in yields of 85% and 95%, respectively. Mono-, tri- or tetrasubstituted products could not be detected [18]. In the ¹H NMR spectrum of **4a** the doublet at $\delta = 4.15$ ppm (ArCH₂NH) and the singlet at $\delta = 1.67$ ppm (C(O)CH₃), together with the AB quartet that is characteristic for a symmetrically substituted calix[4]arene, clearly proved its formation (values for **4b**: $\delta = 4.11$ and 1.42 ppm, respectively).

Introduction of the functional α -chloroacetamido substituents is also possible, using the commercially available *N*-(hydroxymethyl)- α -chloroacetamide. Both **4c** and **4d** were obtained in $\geq 95\%$ yields. In the ¹H NMR spectrum, the ArCH₂NH doublet at $\delta = 4.31$ ppm **4c**, $\delta = 4.30$ ppm **4d** and the CH₂Cl singlet at $\delta = 4.04$ ppm **4c**, $\delta = 3.89$ ppm **4d** revealed the presence of the (2-chloroacetamido)methyl moieties. The resulting chloro substituent can be used for further functional group transformations [19]. These series of reactions prove that this type of reaction is not limited to either propoxy- or ethoxyethoxycalix[4]arenes, as is the case for some other reactions [20, 21].

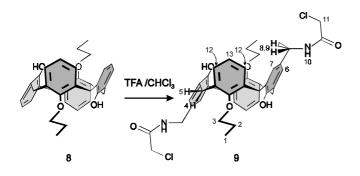
Scheme 2 Synthesis of mono- and bis[(acetamido)methyl]and -[(2-chloroacetamido)methyl]calix[4]arenes 4a-d, starting from calix[4]arenes 3a-b.

N-(Hydroxymethyl)phthalimide as the amidomethylation reagent requires elevated temperatures, due to the lower electrophilic reactivity of the methyleneimmonium ion **2** [15b]. Reaction of calix[4]arene **3a** with 12 equivalents of the commercially available *N*-(hydroxymethyl)phthalimide at reflux temperature gave 47% of the monosubstituted **4e**, 17% of the disubstituted **4f**, and 25% of the calix[4]arene starting material **3a**. The double AB quartet for the methylene bridge protons, the two OH signals, and the signals corresponding to the phthalimide moiety in the ¹H NMR spectrum, prove the formation of monosubstituted **4e**. As expected, the spectrum of the disubstituted product **4f** only showed one OH signal and one AB quartet. Reaction of calix[4]arene **3a** with 18 equivalents of *N*-(hydroxymethyl)phthalimide at 40 °C for 48 hours gave 25% of **4e**, 30% of **4f** and a mixture of other products in which one or both propoxy substituents are absent [22]. Reaction of the ethoxyethoxycalix[4]arene **3b** with 12 equivalents of *N*-(hydroxymethyl)phthalimide gave no dealkylation, and disubstituted **4h** was isolated in 49% yield [23, 24]. The synthesis of these protected amino substituted calix[4]arenes can be considered as a convenient alternative to presently used reactions [11]. The monosubstituted **4e** was used for further functionalization, using *N*-(hydroxymethyl)- α -chloroacetamide for a second amidomethylation step, to give the monophthalimido-mono(chloroacetamido) compound **5** in 60% vield.



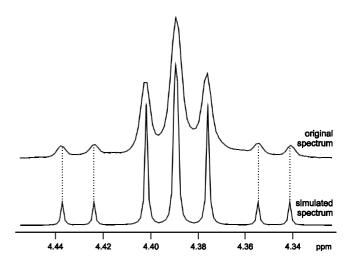
Scheme 3 Synthesis of mono- and bis(phthalimidomethyl) calix[4]arenes 4e-h, and (2-chloroacetamido)methyl-phthalimidomethylcalix[4]arene 5, starting from calix[4]arenes 3a-b.

Reaction of 1,3-dibromocalix[4]arene 6 with six equivalents of N-(hydroxymethyl)acetamide for 36 hours, gave disubstituted 7a in 83% yield. The same reaction with six equivalents of N-(hydroxymethyl)- α -chloroacetamide gave the monosubstituted product 7b in 43% yield, with 27% recovered calix[4]arene starting material 6. Using 12 equivalents of N-(hydroxymethyl)- α chloroacetamide, both the monosubstituted 7b, and disubstituted product 7c were obtained in yields of 20% and 60%, respectively. The ¹H NMR spectrum of 7b exhibits a double AB quartet for the methylene bridge protons, while the ArCH₂NH doublet at $\delta = 4.03$ ppm and the CH₂Cl singlet at $\delta = 4.02$ ppm clearly show the presence of the single (2-chloroacetamido)methyl moiety in 7b. The spectrum of 7c shows a single AB quartet and the expected Ar<u>C</u>H₂NH doublet at $\delta = 4.12$ ppm and CH₂Cl singlet at $\delta = 4.04$ ppm.


This proves that the Tscherniac-Einhorn amidomethylation reaction is not limited to calix[4]arenes containing phenolic moieties, but can also take place on fully alkylated calix[4]arenes, which may even bear other upper rim substituents [25].

To investigate whether the amidomethylation reactions depend on the ability of the calix[4]arene to adapt the cone conformation, dipropoxycalix[4]arene $\mathbf{8}$, fixed

Scheme 4 Synthesis of bis[(acetamido)methyl]calix[4]arene 7a, and mono- and bis[(2-chloroacetamido)methyl]calix[4]-arenes 7b–c, starting from calix[4]arenes 6.


in a so-called *anti* conformation, was reacted with *N*-(hydroxymethyl)- α -chloroacetamide to give disubstituted **9** in 95% yield. The ¹H NMR spectrum of **9** exhibits the CH₂N signals around $\delta = 4.40$ ppm and the CH₂Cl singlet at $\delta = 4.12$ ppm. The spectrum furthermore shows only two types of methylene bridge protons (H₄ and H₅) and one type of propoxy substituent, indicating that in **9** there is a rapid exchange between the two 1,2 alternate conformations. Although the CH₂N protons H₈ and H₉ (Scheme 4) are inherently non-equivalent, their splitting pattern (Figure 1) is more complex than expected, implying a hindered rotation around the Ar–CH₂N bond.

Scheme 5 Synthesis of *anti*-bis[(2-chloroacetamido)methyl] calix[4]arene **9**, starting from calix[4]arene **8**.

Temperature dependent measurements indicated that lowering of the temperature to approximately -30 °C did not show any changes except for small shifts in the absolute chemical shift. Raising the temperature showed the near collapse of the AB system, although the signals of H₈ and H₉ remain non-equivalent even at 60 °C [26].

The complex spectral outlook of the resonances of H_8 and H_9 was also simulated (Figure 1). The ${}^2J_{AB}$ coupling used for the simulation was obtained after irradi-286 ation of the H₁₀ signal, yielding the AB system (${}^{2}J_{AB} = 14.41$ Hz). Using the input values for H₈ at $\delta = 4.315$ ppm, H₉ at $\delta = 4.371$ and H₁₀ at $\delta = 6.690$ ppm and a ${}^{2}J_{AB} = 14.41$ Hz and $J_{AX} = J_{BX} = 5.57$ Hz, clearly revealed an ABX system that showed a nice correlation with the experimentally obtained data.

Fig. 1 Part of the ¹H NMR spectra of anti-5,17-bis[(2-chloroacetamido)methyl]-26,28-dihydroxy-25,27-di(1-propoxy)calix[4]arene (9) (simulated and original).

Conclusions

We conclude that the Tscherniac-Einhorn amidomethylation reaction provides easy access to a variety of novel upper rim functionalized calix[4]arenes. Methylacetamido, methylchloroacetamido, methylphthalimido, and combinations can be introduced under mild conditions on either partially or fully alkylated calix[4]arenes. The calix[4]arene starting materials may bear propyl or ethoxyethyl substituents and may even be functionalized at the upper rim. The amidomethylation reactions are independent of the conformation of the calix[4]arene.

We are presently investigating the use of other amidomethylating agents, to further enlarge the scope of this reaction. Some of the compounds described here have been used as precursors for the synthesis of calix[4]arene based radiopharmaceuticals [27].

Experimental

General [28]

NMR experiments were performed using a Varian Unity 400 WB NMR spectrometer operating at 400 and 100 MHz for ¹H and ¹³C, respectively. ¹H, ¹³C, COSY [29], clean-TOCSY (MLEV17) [30], NOESY [31], and HMQC [32] experiments were used for the assignment of the ¹H and ¹³C resonances.

All 2D spectra were collected as 2D hyper-complex data [33]. After weighting with shifted sine-bell functions, the COSY data were Fourier transformed in the absolute value mode while the clean-TOCSY (MLEV17) and HMQC data were transformed in the phase sensitive mode. All data processing was performed using standard Varian VnmrS/VnmrX software packages. COSY and TOCSY spectra were accumulated with 256 increments and 32 scans per increment, typically. In the clean-TOCSY experiments the mixing time of the MLEV17-pulse was arrayed between 30 and 100 ms; in the NOESY experiments mixing times of 30 to 90 ms were applied. - Routine experiments were recorded on a Varian Inova NMR spectrometer operating at 300 and 75.5 MHz for ¹H and ¹³C, respectively. All spectra were recorded in CDCl₂ unless otherwise stated. Residual solvent protons were used as internal standard, and chemical shifts are given in ppm relative to tetramethylsilane (TMS). Fast atom bombardment (FAB) mass spectra were measured on a Finnigan MAT 90 spectrometer using *m*-nitrobenzyl alcohol (NBA) as a matrix. All solvents were purified by standard procedures. All other chemicals were analytically pure and were used without further purification. All reactions were carried out under an inert argon atmosphere. The presence of solvent in the analytical samples was confirmed by ¹H NMR spectroscopy. Melting points (uncorrected) of all compounds were obtained on a Reichert melting point apparatus. - The calix[4]arenes: 3a [34], 3b [35], 6 [11], 8 [36] were prepared according to literature procedures.

Amidomethylated calix[4]arenes 4, 5, 7, 9 (General Procedure)

The appropriate calix[4]arene and the amidomethylation reagent were dissolved in a mixture of CHCl₃ (20 mL) and trifluoroacetic acid (20 mL). The mixture was stirred overnight at room temperature (unless stated otherwise), after which it was poured onto ca. 50 grams of ice. Saturated NaHCO₃ solution (100 mL) was added, and the mixture was extracted with CH₂Cl₂ (100 mL). The organic layer was washed with a saturated NaHCO₃ solution (until no longer acidic), water, and brine, after which it was dried using MgSO₄. The solvent was removed *in vacuo* to give the crude product.

5,17-Bis[(acetamido)methyl]-26,28-dihydroxy-25,27-di(1-propoxy)calix[4]arene (**4a**)

Amounts used: 0.2 mmol (102 mg) of 3a and 1.2 mmol (107 mg) of *N*-(hydroxymethyl)- α -acetamide. A white solid was obtained which needed no further purification; Yield 85%; *m.p.* 146–148 °C. – ¹H NMR: δ /ppm = 8.42 (s, 2H, OH), 6.9 (m, 8H, ArH), 6.71 (t, 2H, *J* = 7.3 Hz, ArH), 5.57 (bm, 2H, NH), 4.24 and 3.26 (AB-q, 2 × 4H, *J* = 12.8 Hz, ArCH₂Ar), 4.15 (d, 4H, *J* = 5.1 Hz, CH₂N), 3.91 (t, 4H, *J* = 6.2 Hz, OCH₂), 2.01 (m, 4H, CH₂-CH₃), 1.67 (s, 6H, C(O)CH₃), 1.24 (t, 6H, *J* = 7.3 Hz, CH₃). – ¹³C NMR: δ /ppm = 169.5, 152.2, 151.4, 133.0, 128.4, 128.2, 127.9, 127.7, 124.7, 78.0, 52.9, 42.9, 30.8, 22.9, 10.4. – FAB-MS (*m*/*z*): 651.3 (M+H)⁺.

 $\begin{array}{c} C_{40}H_{46}N_2O_6 \cdot 2.0 \ \text{CH}_2\text{Cl}_2 \ \ \text{Calcd.:} \ \ \text{C} \ 61.47 \ \text{H} \ 6.14 \ \ \text{N} \ 3.41 \\ \text{(650.8)} \ \ \text{Found:} \ \ \text{C} \ 61.46 \ \text{H} \ 5.95 \ \ \text{N} \ 3.45. \end{array}$

5,17-Bis[(acetamido)methyl]-26,28-dihydroxy-25,27-bis(1-ethoxyethoxy)calix[4]arene (**4b**)

Amounts used: 0.2 mmol (114 mg) of 3b and 1.2 mmol

J. Prakt. Chem. 1999, 341, No. 3

(107 mg) of *N*-(hydroxymethyl)- α -acetamide. Purification using flash column chromatography (CH₂Cl₂ : MeOH = 96 : 4) gave a white solid; Yield 95%; *m.p.* 112–114 °C. – ¹H NMR: δ /ppm = 8.05 (s, 2H, OH), 6.85 (m, 8H, ArH), 6.69 (t, 2H, *J* = 7.3 Hz, ArH), 5.63 (bt, 2H, *J* = 5.1 Hz, NH), 4.36 and 3.27 (AB-q, 2 × 4H, *J* = 12.8 Hz, ArCH₂Ar), 4.1 (m, 8H, ArOCH₂, CH₂N), 3.87 (m, 4H, ArOCH₂C<u>H₂</u>), 3.63 (q, 4H, *J* = 7.0 Hz, C<u>H</u>₂CH₃), 1.42 (s, 6H, C(O)CH₃), 1.21 (t, 6H, *J* = 7.0 Hz, CH₃). –¹³C NMR: δ /ppm = 169.4, 152.2, 151.5, 133.1, 128.4, 127.9, 127.7, 124.8, 74.9, 68.6, 42.9, 30.6, 22.1, 14.7. – FAB-MS (*m*/z): 711.4 (M+H)⁺.

 $\begin{array}{c} C_{42}H_{50}N_2O_8 \bullet 0.5CH_2Cl_2 \\ (710.9) \end{array} \begin{array}{c} Calcd.: C \ 67.76 \ H \ 6.82 \ N \ 3.72 \\ Found: C \ 67.58 \ H \ 6.82 \ N \ 3.40. \end{array}$

Syn-5,17-Bis[(2-chloroacetamido)methyl]-26,28-dihydroxy-25,27-di(1-propoxy)calix[4]arene (**4c**)

Amounts used: 0.2 mmol (102 mg) of **3a** and 1.2 mmol (148 mg) of *N*-(hydroxymethyl)- α -chloroacetamide. Purification using *p*-TLC (CH₂Cl₂ : MeOH = 96 : 4) gave a white solid; Yield 97%; *m.p.* 193–196 °C. – ¹H NMR: δ /ppm = 8.51 (s, 2H, OH), 6.98 (s, 4H, ArH), 6.94 (d, 4H, *J* = 7.5 Hz, ArH), 6.78 (t, 2H, *J* = 7.5 Hz, ArH), 6.69 (bs, 2H, NH), 4.31 (s, 4H, CH₂N), 4.30 and 3.37 (AB-q, 2 × 4H, *J* = 12.8 Hz, ArCH₂Ar), 4.04 (s, 4H, CH₂Cl), 3.98 (t, 4H, *J* = 6.5 Hz, OCH₂), 2.08 (m, 4H, CH₂–CH₃), 1.32 (t, 6H, *J* = 7.3 Hz, CH₃). – ¹³C NMR: δ /ppm = 165.7, 153.1, 151.9, 133.3, 129.0, 128.5, 128.3, 127.4, 125.3, 78.4, 43.6, 42.6, 31.4, 23.4, 10.9. – FAB-MS (m/z, correct isotope pattern): 716.9 (M–H)⁻.

 $\begin{array}{ll} C_{40}H_{44}Cl_2N_2O_6 \cdot 0.8H_2O & Calcd.: \ C\ 65.44 \ H\ 6.26 \ N\ 3.82 \\ (719.7) & Found: \ C\ 65.44 \ H\ 6.37 \ N\ 3.63. \end{array}$

5,17-Bis[(2-chloroacetamido)methyl]-25,27-bis(1-ethoxyethoxy)-26,28-dihydroxycalix[4]arene (**4d**)

Amounts used: 0.2 mmol (114 mg) of 3b and 1.2 mmol (148 mg) of N-(hydroxymethyl)- α -chloroacetamide. Purification using p-TLC (CH₂Cl₂ : MeOH = 96 : 4) gave a white solid; Yield 95%; *m.p.* 118-122 °C. -1H NMR: δ /ppm = 8.10 (s, 2H, OH), 6.97 (s, 4H, ArH), 6.93 (d, 4H, J = 7.3 Hz, ArH), 6.81 (bs, 2H, NH), 6.75 (t, 2H, J = 7.3 Hz, ArH), 4.43 and 3.35 (AB-q, $2 \times 4H$, J = 13.2 Hz, ArCH₂Ar), 4.30 (d, 4H, J = 5.5 Hz, CH₂N), 4.18 (t, 4H, J = 4.4 Hz, $\bar{A}rOCH_2$), 3.93 (t, 4H, J = 4.4 Hz, ArOCH₂CH₂), 3.89 (s, 4H, CH₂Cl), 3.70 (q, 4H, J = 7.0 Hz, CH_2CH_3), 1.28 (t, 6H, J = 7.0 Hz, CH_3). – ¹³C NMR: δ /ppm = 165.6, 152.9, 151.8, 133.3, 128.9, 128.3, 128.2, 127.3, 125.2, 75.4, 69.0, 66.8, 43.5, 42.4, 31.0, 15.1. -FAB-MS (m/z, correct isotope pattern): 777.3 (M-H)-. C₄₂H₄₈Cl₂N₂O₈ • 0.4H₂O Calcd.: C 64.10 H 6.25 N 3.56 (779.8)Found: C 64.10 H 6.02 N 3.50.

26,28-Dihydroxy-5-(phthalimidomethyl)-25,27-di(1propoxy)calix[4]arene (**4e**)

Amounts used: 0.2 mmol (102 mg) of **3a** and 2.4 mmol (425 mg) of *N*-(hydroxymethyl)phthalimide. The reaction was done at reflux temperature. Purification using flash column chromatography (CH₂Cl₂) first gave **3a** (Yield 25%) followed by **4e** as a white solid (Yield 47%) and finally **4f** as a white solid (Yield 17%); *m.p.* 118–120 °C. – ¹H NMR: δ /ppm = 8.34 (s, 1H, OH), 8.23 (s, 1H, OH), 7.7 (m, 2H, Phth), 7.5 (m, 2H, Phth), 7.13 (s, 2H, ArH–CH₂Phth), 6.95 (d, 2H, *J* = 7.4 Hz, ArH), 6.9–6.8 (m, 4H, ArH), 6.64 (t, 2H, *J* = 7.4 Hz, ArH), 6.54 (t, 1H, *J* = 7.4 Hz, ArH), 4.61 (s, 2H, CH₂Phth), 4.22 + 4.19 and 3.30 + 3.28 (2 × AB-q, 4 × 2H,

J = 12.9 Hz, ArCH₂Ar), 3.88 (t, 4H, J = 6.2 Hz, OCH₂), 1.97 $(m, 4H, CH_2 - CH_3), 1.22 (t, 6H, J = 7.3 Hz, CH_3). - {}^{13}C NMR:$ δ /ppm = 168.5, 153.3, 151.8, 133.7, 133.5, 133.2, 132.2, 129.5, 129.0, 128.9, 128.4, 128.2, 128.1, 126.8, 125.3, 123.2, 119.0, 78.3, 41.3, 31.4, 23.5, 10.9. – FAB-MS (m/z): 667.3 (M⁺). $\rm C_{43}H_{41}NO_6 \cdot 0.6CH_2Cl_2 \ \ Calcd.: \ C \ 72.86 \ \ H \ 5.92 \ \ N \ 1.95$ Found: C 72.65 H 5.73 N 1.88. (667.8)

26,28-Dihydroxy-5,17-bis(phthalimidomethyl)-25,27-di(1propoxy)calix[4]arene (4f)

Amounts used: 0.2 mmol (102 mg) of 3a and 3.6 mmol (638 mg) of N-(hydroxymethyl)phthalimide. The reaction was performed at 40 °C for 48 h. Purification using flash column chromatography (CH₂Cl₂) first gave 4e as a white solid (Yield 25%), followed by **4f** as a white solid (Yield 30%) and finally a mixture of partially and fully depropylated products (not characterized); m.p. 140-142 °C. – ¹H NMR: δ /ppm = 8.43 (s, 2H, OH), 7.8 (m, 4H, Phth), 7.65 (m, 4H, Phth), 7.21 (s, 4H, ArH), 6.95 (d, 2H, J = 7.7 Hz, ArH), 6.73 (t, 2H, J = 7.7 Hz, ArH), 4.70 (s, 4H, CH₂Phth), 4.26 and 3.38 (AB-q, 2×4 H, J = 12.8 Hz, ArCH₂Ar), 3.96 (t, 4H, J =6.2 Hz, OCH₂), 2.05 (m, 4H, CH₂-CH₃), 1.30 (t, 6H, J =7.3 Hz, CH₃). $-^{13}$ C NMR: δ /ppm = 167.6, 152.6, 151.2, 133.9, 133.2, 132.7, 129.0, 128.5, 127.7, 124.9, 123.2, 122.6, 77.8, 40.7, 30.8, 22.9, 10.4. - FAB-MS (m/z): 826.4 (M⁺). $\begin{array}{c} C_{52}H_{46}N_2O_8 \cdot 0.35CH_2Cl_2 \ \ Calcd.: \ C \ 72.38 \ \ H \ 5.38 \ \ N \ 3.22 \\ (827.0) \ \ Found: \ C \ 72.45 \ \ H \ 5.14 \ \ N \ 3.34. \end{array}$

26,28-Dihydroxy-25,27-bis(1-ethoxyethoxy)-5,17-bis(phthal*imidomethyl*) *calix*[4]*arene* (**4h**)

Amounts used: 0.4 mmol (228 mg) of 3b and 7.2 mmol (1276 mg) of N-(hydroxymethyl)phthalimide. The reaction was performed at 40 °C. Purification using flash column chromatography (CH_2Cl_2 : MeOH = 99 : 1) first gave a mixture of **3b** and **4g**, followed by **4h** as a white solid (Yield 49%); *m.p.* $125-127 \text{ °C.} - {}^{1}\text{H NMR}$: $\delta/\text{ppm} = 8.40 \text{ (s, 2H, OH)}, 7.8 \text{ (m,})$ 4H, Phth), 7.65 (m, 4H, Phth), 7.17 (s, 4H, ArH), 6.93 (d, 2H, *J* = 7.3 Hz, ArH), 6.72 (t, 2H, *J* = 7.3 Hz, ArH), 4.71 (s, 4H, CH₂Phth), 4.40 and 3.32 (AB-q, 2×4 H, J = 13.1 Hz, ArCH₂Ar), 4.20 (t, 4H, J = 4.4 Hz, ArOCH₂), 3.91 (t, 4H, J = 4.4 Hz, ArOCH₂CH₂), 3.86 (s, 4H, CH₂Cl), 3.70 (q, 4H, J =7.1 Hz, $CH_{2}CH_{2}$), 1.27 (t, 6H, J = 7.1 Hz, CH_{2}). $- {}^{13}C$ NMR: δ /ppm = 167.7, 152.7, 151.6, 134.0, 133.5, 129.2, 128.8, 128.4, 128.2, 127.7, 127.1, 125.1, 75.5, 69.0, 66.6, 40.6, 31.2, 14.8. - FAB-MS (m/z): 886.2 (M⁺).

$C_{54}H_{50}N_2O_{10}$	Calcd.:	C 73.12	H 5.68	N 3.16
(887.0)		C 72.89		

5-[(2-Chloroacetamido)methyl]-26,28-dihydroxy-17-(phthalimidomethyl)-25,27-di(1-propoxy)calix[4]arene (5)

Amounts used: 0.15 mmol (100 mg) of 4e and 0.45 mmol (56 mg) of N-(hydroxymethyl)- α -chloroacetamide. Purification using p-TLC (CH₂Cl₂ : MeOH = 96 : 4) gave a white solid; Yield 60%; *m.p.* -142 °C. -1H NMR: δ /ppm = 8.41 (s, 1H, OH), 8.37 (s, 1H, OH), 7.75 (m, 2H, Phth), 7.6 (m, 2H, Phth), 7.13 (s, 2H, ArH–CH₂Phth), 6.89 (d, 2H, J = 7.3 Hz, ArH), 6.89 (s, 2H, Ar<u>H</u>–CH₂N), 6.84 (d, 2H, J = 7.5 Hz, ArH), 6.68 (t, 2H, J = 7.4 Hz, ArH), 6.53 (bs, 1H, NH), 4.61 (s, 2H, CH₂Phth), 4.22 + 4.18 and 3.30 + 3.27 (2 × AB-q, 4 × 2H, J = 13.2 and 12.8 Hz, ArCH₂Ar), 4.23 (d, 2H, J = 5.5 Hz, CH₂N), 3.99 (s, 2H, CH₂Cl), 3.88 (t, 4H, *J* = 6.4 Hz, OCH₂), 1.98 (m, 4H, CH_2 - CH_3), 1.22 (t, 6H, J = 7.2 Hz, CH_3). ¹³C NMR: δ /ppm = 168.2, 165.6, 156.2, 156.0, 153.1, 151.8, 137.7, 134.1, 133.8, 133.4, 133.1, 130.6, 129.5, 129.2, 128.9, 128.6, 128.3, 127.4, 125.4, 121.7, 114.6, 78.4, 77.2, 76.8, 42.6, 41.3, 31.3, 30.8, 23.4, 23.3, 23.0, 10.9, 10.4, 10.1. – FAB-MS (m/z, correct isotope pattern): 772.3 (M⁺).

 $C_{46}H_{45}ClN_2O_7 \cdot 0.5CH_2Cl_2$ Calcd.: C 68.46 H 5.68 N 3.43 Found: C 68.30 H 5.51 N 2.99. (773.3)

11,23-Bis[(acetamido)methyl]-5,17-dibromo-25,26,27,28tetra(1-propoxy)calix[4]arene (7a)

Amounts used: 0.2 mmol (150 mg) of 6 and 1.2 mmol (107 mg) of N-(hydroxymethyl)- α -acetamide. The reaction mixture was stirred for 36 h at room temperature. Purification using flash column chromatography (CH₂Cl₂) gave a white solid; Yield 83%; m.p. 284–287 °C. -1H NMR: $\delta/\text{ppm} = 6.88$ (s, 4H, ArH), 6.46 (s, 4H, ArH), 6.18 (bt, 2H, J = 5.8 Hz, NH), 4.39 and 3.10 (AB-q, 2 × 4H, J = 13.2 Hz, ArCH₂Ar), 4.13 (d, 2H, J = 5.8 Hz, CH₂N), 3.87 (t, 4H, J =7.7 Hz, OCH₂), 3.78 (t, 4H, J = 7.7 Hz, OCH₂), 2.08 (s, 6H, C(O)CH₃), 1.91 (m, 8H, CH₂-CH₃), 0.99 (m, 12H, CH₃). -¹³C NMR: δ/ppm = 169.6, 155.3, 154.0, 136.8, 133.6, 131.3, 130.3, 126.2, 114.1, 76.3, 42.1, 30.3, 22.7, 22.5, 9.8, 9.6. -FAB-MS (m/z, correct isotope pattern): 893.2 (M+H)⁺. $C_{46}H_{56}Br_2N_2O_6 \cdot 0.15CH_2Cl_2$ Calcd.: C 61.22 H 6.27 N 3.09 (892.8)Found: C 61.22 H 6.06 N 2.87.

5,17-Dibromo-11-[(2-chloroacetamido)methyl]-25,26,27,28*tetra*(*1*-*propoxy*)*calix*[4]*arene* (**7b**)

Amounts used: 0.2 mmol (150 mg) of 6 and 1.2 mmol (148 mg) of N-(hydroxymethyl)- α -chloroacetamide. The reaction mixture was stirred for 36 h at room temperature. Purification using flash column chromatography (CH_2Cl_2) gave a white solid; Yield 43%; m.p. 93–95 °C. – ¹H NMR: δ /ppm = 6.92 and $6.89 (2 \times s, 2 \times 2H, ArH-Br), 6.42 (s, 3H, ArH),$ 6.32 (bs, 1H, NH), 6.22 (s, 2H, ArH), 4.32 + 4.31 and 3.04 + $3.02 (2 \times AB-q, 4 \times 2H, J = 13.5 Hz, ArCH_2Ar), 4.03 (d, 2H,$ J = 6.5 Hz, CH₂N), 4.02 (s, 2H, CH₂Cl), $3.\tilde{8}$ (m, 4H, OCH₂), $3.68 (t, 4H, J = 7.3 Hz, OCH_2), 1.81 (m, 8H, CH_2-CH_3), 0.95$ (m, 6H, CH₃), 0.87 (t, 6H, J = 7.7 Hz, CH₃). $-^{13}$ C NMR: δ /ppm = 165.1, 155.7, 155.5, 155.1, 137.5, 137.2, 133.6, 133.2, 130.6, 130.5, 130.1, 127.6, 126.5, 121.3, 114.1, 76.3, 42.7, 42.1, 30.3, 22.8, 22.5, 9.9, 9.5. - FAB-MS (m/z, correct isotope pattern): 855.3 (M⁺).

```
C<sub>43</sub>H<sub>50</sub>Br<sub>2</sub>ClNO<sub>5</sub> Calcd.: C 60.33 H 6.00 N 1.64
(856.1)
                        Found: C 60.51 H 5.77 N 1.72.
```

5,17-Dibromo-11,23-bis[(2-chloroacetamido)methyl]-25,26,27,28-tetra(1-propoxy)calix[4]arene (7c)

Amounts used: 0.2 mmol (150 mg) of 6 and 2.4 mmol (296 mg) of N-(hydroxymethyl)- α -chloroacetamide. The reaction mixture was stirred for 36 h at room temperature. Purification using flash column chromatography (CH₂Cl₂) first gave 6 (Yield 15%) followed by 7b as a white solid (Yield 20%) and finally 7c as a white solid (Yield 60%); m.p. 105-108 °C. – ¹H NMR: δ /ppm = 6.79 (s, 4H, ArH), 6.43 (s, 4H, ArH), 6.40 (bs, 2H, NH), 4.32 and 3.03 (AB-q, $2 \times 2H$, J =13.2 Hz, ArCH₂Ar), 4.12 (d, 4H, J = 5.5 Hz, CH₂N), 4.04 (s, 4H, CH₂Cl), 3.78 (t, 4H, J = 7.7 Hz, OCH₂), 3.71 (t, 4H, J =

J. Prakt. Chem. 1999, 341, No. 3

7.3 Hz, OCH₂), 1.82 (m, 8H, CH₂–CH₃), 0.92 (m, 12H, CH₃). $^{-13}$ C NMR: δ /ppm = 165.4, 155.2, 136.7, 133.9, 130.4, 130.3, 130.1, 126.4, 114.3, 76.1, 42.5, 42.2, 30.3, 22.7, 22.5, 9.8, 9.7. – FAB-MS (*m*/*z*, correct isotope pattern): 958.6 (M⁻). C₄₆H₅₄Br₂Cl₂N₂O₆ · 0.1 CH₂Cl₂ (961.7) Calcd.: C 57.07 H 5.63 N 2.89

Calcd.: C 57.07 H 5.63 N 2.89 Found: C 56.99 H 5.60 N 2.85.

Anti-5,17-Bis[(2-chloroacetamido)methyl]-26,28-dihydroxy-25,27-di(1-propoxy)calix[4]arene (9)

Amounts used: 0.2 mmol (102 mg) of **8** and 1.2 mmol (148 mg) of *N*-(hydroxymethyl)-α-chloroacetamide. Purification using flash column chromatography (CH₂Cl₂ : MeOH = 96 : 4) gave a white solid; Yield 95%; *m.p.* 245–248 °C. – ¹H NMR: δ/ppm = 7.37 (s, 2H, OH), 7.18 (d, 4H, *J* = 7.3 Hz, ArH), 7.03 (t, 2H, *J* = 7.3 Hz, ArH), 7.03 (s, 4H, ArH), 6.76 (bs, 2H, NH), 4.40 (m, 4H, CH₂N), 4.12 (s, 4H, CH₂Cl), 3.99 and 3.77 (AB-q, 2 × 4H, *J* = 15.4 Hz, ArCH₂Ar), 3.59 (t, 4H, *J* = 7.0 Hz, OCH₂), 1.19 (m, 4H, CH₂–CH₃), 0.38 (t, 6H, *J* = 7.3 Hz, CH₃). – ¹³C NMR: δ/ppm = 165.5, 153.2, 153.1, 133.2, 128.9, 128.1, 124.9, 75.3, 43.6, 42.7, 34.8, 22.1, 9.2. – FAB-MS (*m/z*, correct isotope pattern): 716.9 (M–H)[–].

References

- For recent reviews on calix[4]arenes see: a) V. Böhmer, Angew. Chem. Int. Ed. Engl. **1995**, *34*, 713; b) A. Ikeda, S. Shinkai, Chem. Rev. **1997**, *97*, 1713
- [2] C. D. Gutsche, J. A. Levine, J. Am. Chem. Soc. 1982, 104, 2652
- [3] J.-D. van Loon, A. Arduini, L. Coppi, W. Verboom, A. Pochini, R. Ungaro, S. Harkema, D. N. Reinhoudt, J. Org. Chem. 1990, 55, 5639
- [4] C. D. Gutsche, P. F. Pagoria, J. Org. Chem. 1985, 50, 5795
- [5] K. No, Y. Noh, Y. Kim, Bull. Korean Chem. Soc. 1986, 7, 442
- [6] A. Arduini, G. Manfredi, A. Pochini, A. R. Sicuri, R. Ungaro, J. Chem. Soc., Chem. Commun. 1991, 936
- [7] W. Verboom, A. Durie, R. J. M. Egberink, Z. Asfari, D. N. Reinhoudt, J. Org. Chem. **1992**, *57*, 1313
- [8] A. M. A. van Wageningen, E. Snip, W. Verboom, D. N. Reinhoudt, H. Boerrigter, Liebigs Ann./Recueil 1997, 2235
- J. Prakt. Chem. 1999, 341, No. 3

- [9] P. Timmerman, W. Verboom, D. N. Reinhoudt, A. Arduini, S. Grandi, A. R. Sicuri, A. Pochini, R. Ungaro, Synthesis 1994, 185
- [10] N. Pellizzi, A. Casnati, R. Ungaro, Chem. Commun. 1998, 2607
- [11] A. Casnati, M. Fochi, P. Minari, A. Pochini, M. Reggiani, R. Ungaro, D. N. Reinhoudt, Gazz. Chim. Ital. **1996**, *126*, 99
- a) Houben-Weyl Methoden der Organischen Chemie, 4th ed.,
 G. Thieme Stuttgart 1957, Vol. XI/1, 795; b) Organic Reactions, John Wiley & Sons, Inc. New York–London–Sydney, 1965, Vol. 14, 63
- [13] V. N. Pastushok, K. Hu, J. S. Bradshaw, N. K. Dalley, A. V. Bordunov, N. G. Lukyanenko, J. Org. Chem. **1997**, 62, 212
- [14] K. Hu, J. S. Bradshaw, V. N. Pastushok, K E. Krakowiak, N. K. Dalley, X. X. Zhang, R. M. Izatt, J. Org. Chem. **1998**, *63*, 4786
- [15] a) H. E. Zaugg, Synthesis 1984, 85; b) H. E. Zaugg, Synthesis, 1984, 181; c) H. E. Zaugg, Synthesis 1970, 49
- [16] Tetrahydroxycalix[4]arene reacts smoothly at room temperature (24 h) to afford the tetrakis(dimethylaminomethyl)calix[4]arene. a) C. D. Gutsche, K. C. Nam, J. Am. Chem. Soc. **1998**, *110*, 6153; The 1,3-dimethyl ether requires 66 h reaction time in refluxing dioxane [3]; The 1,3-dibenzoate and the 1,3-diallyl ether both fail to undergo the Mannich reaction even at 140 °C. b) K. C. Nam, T. H. Yoon, Bull. Korean Chem. Soc. **1993**, *14*, 169
- [17] Several strong acids were tried as solvents, however, only TFA allowed for both the reactions to take place as well as for the calix[4]arenes to stay intact. Chloroform was added for solubility reasons.
- [18] Alkylation of the phenol ring reduces the reactivity: A. W. Francis, J. Am. Chem. Soc. **1926**, *48*, 1631
- [19] Calix[4]arenes bearing NHC(O)CH₂Cl substituents have been used for the synthesis of a number of upper rim-bridged calix[4]arenes. a) B. R. Cameron, S. J. Loeb, J. Chem. Soc., Chem. Commun. **1996**, 2003; b) D. M. Rudkevich, W. Verboom, D. N. Reinhoudt, J. Org. Chem. **1994**, *59*, 3683; c) P. D. Beer, P. A. Gale, D. Hesek, Tetrahedron Lett. **1995**, *36*, 767; d) D. M. Rudkevich, W. Verboom, D. N. Reinhoudt, Tetrahedron Lett. **1994**, *35*, 7131; *ibid.* J. Org. Chem. **1995**, *60*, 6585
- [20] Formylation *does* work for tetrakis(1-ethoxyethoxy)calix[4]arene, but not for tetrapropoxycalix[4]arene. a) A. Arduini, S. Fanni, G. Manfredi, A. Pochini, R. Ungaro, A. R. Sicuri, F. Ugozzoli, J. Org. Chem. **1995**, *60*, 1448; b) P. Molenveld, J. F. J. Engbersen, H. Kooijman, A. L. Spek, D. N. Reinhoudt, J. Am. Chem. Soc. **1998**, *120*, 6726
- [21] The 1,3- and 1,2-dinitro compounds *can* be separated if they are tetrapropoxycalix[4]arenes, but *not* when they are tetrakis(1-ethoxyethoxy)calix[4]arenes. P. Timmerman, K. G. A. Nierop, E. A. Brinks, W. Verboom, F. C. J. M. van Veggel, W. P. van Hoorn, D. N. Reinhoudt, Chem. Eur. J. **1996**, *2*, 134
- [22] Depropylation under acidic conditions has been reported: Y. Morzherin, D. M. Rudkevich, W. Verboom, D. N. Reinhoudt, J. Org. Chem. **1993**, 58, 7602
- [23] Ethoxyethoxy substituents are known to be stable under acidic conditions [22].
- [24] The monosubstituted product **4g**, could not be separated from the calix[4]arene starting material **3b**.
- [25] The reaction was also performed starting from several tetraalkylated calix[4]arenes, but this resulted in the formation of a mixture of mono-, di-, tri-, and tetrasubstituted products (not isolated).
- [26] The situation in different solvents like $DMSO-D_6$ does not change this situation dramatically, except for different chemical shifts in the aromatic region as well as for the NH resonance (H₁₀). Raising of the temperature to approximately

100 °C did not change the spectral outlook of the methylene signals H_8 and H_9 ; these resonances stay strongly anisochronic with no signs of collapse. For both solvents, remarkably sharp and only slowly exchanging hydroxyl signals were observed.

- [27] K. J. C. van Bommel, W. Verboom, D. N. Reinhoudt, manuscript in preparation.
- [28] The name calix[4]arene is used instead of the official CA name: pentacyclo[19.3.1.1^{3,7}.1^{9,13}.1^{15,19}]octacosa-1(25),3,5, 7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-25,26,27, 28-tetrol.
- [29] A. Bax, R. Freeman, J. Magn. Reson. 1981, 44, 542
- [30] A. Bax, D. G. Davis, J. Magn. Reson. 1985, 65, 355
- [31] J. Jeener, B. H. Meier, P. Bachmann, R. R. Ernst, J. Chem. Phys. 1979, 71, 4546
- [32] A. Bax, R. H. Griffey, B. L. Hawkins, J. Magn. Reson. 1983, 55, 301
- [33] D. J. States, R. A. Haberkorn, D. J. Ruben, J. Magn. Reson. 1982, 48, 286
- [34] A. Casnati, A. Pochini, R. Ungaro, F. Ugozzoli, F. Arnaud, S. Fanni, M.-J. Schwing, R. J. M. Egberink, F. de Jong, D.

- N. Reinhoudt, J. Am. Chem. Soc. 1995, 117, 2767
- [35] A. Ikeda, T. Tsudera, S. Shinkai, J. Org. Chem. 1997, 62, 3568
- [36] L. C. Groenen, J.-D. van Loon, W. Verboom, S. Harkema, A. Casnati, R. Ungaro, A. Pochini, F. Ugozzoli, D. N. Reinhoudt, J. Am. Chem. Soc. **1991**, *113*, 2385
- Address for correspondence:
- Prof. Dr. Ir. David N. Reinhoudt
- Laboratory of Supramolecular Chemistry and Technology

MESA⁺ Research Institute

University of Twente

P. O. Box 217

7500 AE Enschede

The Netherlands

Fax: Internat. code (0)53 489 4645

e-mail: d.n.reinhoudt@ct.utwente.nl